Author Affiliations
Abstract
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Laboratory of Navigation and Location Services, Shanghai Institute for Advanced Communication and Data Science, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 SJTU-Pinghu Institute of Intelligent Optoelectronics, Pinghu 314200, China
3 State Grid Sichuan Electric Power Company Chengdu Xinjin Power Supply Branch, Xinjin 611430, China
Based on the wavelength transparency of the Butler matrix (BM) beamforming network, we demonstrate a multi-beam optical phased array (MOPA) with an emitting aperture composed of grating couplers at a 1.55 μm pitch for wavelength-assisted two-dimensional beam-steering. The device is capable of simultaneous multi-beam operation in a field of view (FOV) of 60° × 8° in the phased-array scanning axis and the wavelength-tuning scanning axis, respectively. The typical beam divergence is about 4° on both axes. Using multiple linearly chirped lasers, multi-beam frequency-modulated continuous wave (FMCW) ranging is realized with an average ranging error of 4 cm. A C-shaped target is imaged for proof-of-concept 2D scanning and ranging.
Photonics Research
2024, 12(5): 912
Author Affiliations
Abstract
1 University of Shanghai for Science and Technology, Terahertz Technology Innovation Research Institute, Shanghai Key Laboratory of Modern Optical System, Shanghai, China
2 Shanghai Jiao Tong University, State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai, China
We propose a terahertz (THz) vortex emitter that utilizes a high-resistance silicon resonator to generate vortex beams with various topological charges. Addressing the challenge of double circular polarization superposition resulting from the high refractive index contrast, we regulate the transverse spin state through a newly designed second-order grating partially etched on the waveguide’s top side. The reflected wave can be received directly by a linearly polarized antenna, simplifying the process. Benefiting from the tuning feature, a joint detection method involving positive and negative topological charges identifies and detects rotational Doppler effects amid robust micro-Doppler interference signals. This emitter can be used for the rotational velocity measurement of an on-axis spinning object, achieving an impressive maximum speed error rate of ∼2 % . This approach holds promise for the future development of THz vortex beam applications in radar target detection and countermeasure systems, given its low cost and potential for mass production.
vortex beam emitter terahertz rotational Doppler detection 
Advanced Photonics
2023, 5(6): 066002
Author Affiliations
Abstract
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Laboratory of Navigation and Location Services, Shanghai Institute for Advanced Communication and Data Science, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 SJTU-Pinghu Institute of Intelligent Optoelectronics, Pinghu 314200, China
Microring-based optical switches are promising for wavelength-selective switching with the merits of compact size and low power consumption. However, the large insertion loss, the high fabrication, and the temperature sensitivity hinder the scalability of silicon microring optical switch fabrics. In this paper, we utilize a three-dimensional (3D) microring-based optical switch element (SE) on a multi-layer Si3N4-on-SOI platform to realize high-performance large-scale optical switch fabrics. The 3D microring-based SE consists of a Si/Si3N4 waveguide overpass crossing in the bottom and the top layers, and Si3N4 dual-coupled microring resonators (MRRs) in the middle layer. The switch is calibration-free and has low insertion loss. With the 3D microring-based SEs, we implement an 8×8 crossbar optical switch fabric. As the resonance wavelengths of all SEs are well aligned, only one SE needs to be turned on in each routing path, which greatly reduces the complexity of the switch control. The optical transmission spectra show a box-like shape, with a passband width of 69 GHz and an average on-state loss of 0.37 dB. The chip has a record-low on-chip insertion loss of 0.52–2.66 dB. We also implement a non-duplicate polarization-diversity optical switch by using the bidirectional transmission characteristics of the crossbar architecture, which is highly favorable for practical applications. 100 Gb/s dual-polarization quadrature-phase-shift-keying (DP-QPSK) signal is transmitted through the switch without significant degradation. To the best of our knowledge, this is the first time that 3D MRRs have been used to build highly scalable polarization-diversity optical switch fabrics.
Photonics Research
2023, 11(5): 712
Author Affiliations
Abstract
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Laboratory of Navigation and Location Services, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 SJTU-Pinghu Institute of Intelligent Optoelectronics, Pinghu 314200, China
On-chip Fourier-transform spectrometers (FTSs) based on Mach–Zehnder interferometer (MZI) arrays suffer from severe central wavelength and fringe contrast variation due to fabrication errors. Even though a calibration matrix can be employed to correctly retrieve the input spectra, environmental temperature variation greatly degrades the retrieving performance. In this paper, we devise a dual-layer Si3N4 waveguide interferometer to reduce the temperature sensitivity. The beating of the even and odd supermodes in the dual-layer waveguide generates periodic intensity fluctuations in the spectrum. Since these two modes have similar modal profiles, their thermal sensitivity and propagation loss are relatively balanced, leading to a low temperature sensitivity and a high interference extinction ratio. We designed and fabricated a passive FTS based on a 32-channel dual-layer Si3N4 waveguide array. Experimental results show that the temperature sensitivity is reduced to 10 pm/°C, which is almost half that of single-layer Si3N4 MZI-based FTSs. With this chip, we accurately reconstructed various types of optical spectra, including single and two sparse laser lines, and broadband optical spectra. Our method can fit a wide wavelength range, which is a promising technology to improve the practical applications of on-chip FTSs.
Photonics Research
2023, 11(4): 591
Lang Li 1,2†Tao Wang 1,2,5,*†Xinhang Li 3†Peng Huang 1,2[ ... ]Guihua Zeng 1,2,7,*
Author Affiliations
Abstract
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Center for Quantum Sensing and Information Processing, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
3 State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Laboratory of Navigation and Location Services, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
4 SJTU-Pinghu Institute of Intelligent Optoelectronics, Pinghu 314200, China
5 e-mail: tonystar@sjtu.edu.cn
6 e-mail: luliangjun@sjtu.edu.cn
7 e-mail: ghzeng@sjtu.edu.cn
Integrated quantum key distribution (QKD) systems based on photonic chips have high scalability and stability, and are promising for further construction of global quantum communications networks. On-chip quantum light sources are a critical component of a fully integrated QKD system; especially a continuous-variable QKD (CV-QKD) system based on coherent detection, which has extremely high requirements for the light sources. Here, for what we believe is the first time, we designed and fabricated two on-chip tunable lasers for CV-QKD, and demonstrated a high-performance system based on these sources. Because of the high output power, fine tunability, and narrow linewidth, the involved on-chip lasers guarantee the accurate shot-noise-limited detection of quantum signals, center wavelength alignment of nonhomologous lasers, and suppression of untrusted excess noise. The system’s secret key rate can reach 0.75 Mb/s at a 50 km fiber distance, and the secure transmission distance can exceed 100 km. Our results mark a breakthrough toward building a fully integrated CV-QKD, and pave the way for a reliable and efficient terrestrial quantum-secure metropolitan area network.
Photonics Research
2023, 11(4): 504
作者单位
摘要
1 西南交通大学信息科学与技术学院,四川 成都 611756
2 上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240
提出并实验验证了一种基于硅基片上光路由的大规模光载一体化接收机多天线全球导航卫星信号(GNSS)差分定位系统。该系统基于光载无线(RoF)分布式天线架构实现远端多点GNSS信号采集,并利用低损耗、大带宽、抗电磁干扰的RoF传输链路实现远端采集GNSS信号的本地端集中式接收。在本地端处,利用互补金属氧化物半导体(CMOS)工艺兼容的高速硅基光开关芯片实现不同监测节点光载GNSS信号的定时切换与差分解算,构建基于片上光路由的时分复用型一体化接收机多天线GNSS定位系统。在实验中,利用自主研制的1×8马赫-曾德尔干涉型热光硅基光开关芯片构建了具有5个远端监测节点的多天线GNSS定位实验系统,GNSS信号的RoF传输距离为10 km。实验结果表明,该光开关芯片模块的实时响应时间小于200 μs,可在无需额外光放大的条件下稳定支撑10 km外5个远端监测节点的高精度定位,其在东(E)、北(N)、高(U)方向的定位精度均达到毫米量级。
光电子学 微波光子学 硅基光开关芯片 全球导航卫星系统 一体化接收机多天线 高精度定位 
光学学报
2022, 42(24): 2425001
作者单位
摘要
1 上海交通大学 电子信息与电气工程学院 区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
2 上海交通大学 平湖智能光电研究院, 浙江 嘉兴 314299
微波波束形成器是相控阵雷达、5G通信基站等射频发射系统中的核心器件。近年来硅基微波光子波束形成器以其带宽大、尺寸紧凑、重量轻、损耗低、抗电磁干扰等优势成为微波光子学中的研究热点之一。文章从微波光子波束形成的基本原理和性能指标出发, 总结了近年来应用于微波光子波束形成器的多种集成可调光学真延迟线结构和波束形成网络架构, 并介绍了微波光子波束形成系统集成芯片和自动化控制的最新进展, 最后对硅基微波光子波束形成器的未来发展进行了展望。
硅基光电子学 微波光子 光控波束形成网络 光学延迟线 silicon photonics microwave photonics optical beamforming networks optical delay lines 
半导体光电
2022, 43(2): 230
孙寒玮 1陆梁军 1,2,*金敏慧 1,2刘娇 1,2[ ... ]陈建平 1,2
作者单位
摘要
1 上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240
2 上海交大-平湖智能光电研究院,浙江 平湖 314200
本文对基于级联反谐振微环的1×N树状波束成形网络芯片进行了理论分析。该结构采用反谐振微环实现低延迟抖动、大带宽的光学真延迟,并利用树状结构来减少延迟单元的数量,可用于宽带大规模微波光子相控阵天线系统中。针对微环单元初始状态随机的问题,本团队构建了一套自动化标定系统,利用光谱与微波延迟谱联合迭代优化来精准控制微环延迟量和谐振波长。测试了基于氮化硅的1×8低损耗波束成形网络芯片中的最长路径,实现了路径中所有21个级联微环的延迟离散调节,测得最大延迟量为560 ps,延迟抖动小于11.2 ps;同时验证了3个微环的延迟连续调节,3个微环在0~8 GHz带宽内的延迟抖动小于7.5 ps。本系统可以消除微环间热串扰对微环状态标定的影响,同时降低了芯片与硬件系统的复杂度。
光学器件 集成光器件 微环谐振器 光延迟线 反馈控制算法 
中国激光
2022, 49(11): 1119001
Weihong Shen 1,2†Gangqiang Zhou 2†Jiangbing Du 1,2,*Linjie Zhou 2[ ... ]Zuyuan He 2,3,4
Author Affiliations
Abstract
1 Peng Cheng Laboratory, Shenzhen 518055, China
2 State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
3 Department of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
4 e-mail: zuyuanhe@sjtu.edu.cn
Recently, significantly raised interests have emerged for the 2 µm waveband as an extended new window for fiber optic communication. Much research progress has been made on the photonic integrated circuits for the 2 µm waveband, especially on the CMOS-compatible silicon-on-insulator wafer. In this work, a silicon integrated microring modulator (MRM) with record high-speed performances at the 2 µm waveband was demonstrated. An L-shaped PN junction was specially designed for 2 µm to achieve a high modulation efficiency with VπL of 0.85 V·cm. The measured 3 dB bandwidth is 18 GHz, supporting up to 50 Gbps signaling at 2 µm. Additionally, optical bistability induced by the thermo-optical effect and nonlinear effects was analyzed theoretically and observed experimentally in the 2 µm MRM for the first time to our knowledge. Nonlinear coupled mode theory and the Runge–Kutta method were used to simulate the behaviors of bistability in the 2 µm MRM. The simulation and experimental results indicate that, when the MRM is launched by a high optical power, the distorted resonant spectrum under an optical bistable state deteriorates the modulation efficiency and signal performances. This work breaks the record of high-speed silicon MRM at 2 µm, drawing a promising prospect for the silicon photonic integration and high-speed interconnection at the 2 µm waveband, and it provides the referenceable analysis of optical bistability, which guides the design and experimental investigation of 2 µm MRM.
Photonics Research
2022, 10(3): 03000A35
Author Affiliations
Abstract
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
2 Peng Cheng Laboratory, Shenzhen 518055, China
Optical signaling without a high voltage driver for electric-optic modulation is in high demand to reduce power consumption, packaging complexity, and cost. In this work, we propose and experimentally demonstrate a silicon mode-loop Mach–Zehnder modulator (ML-MZM) with record-high modulation efficiency. We used a mode-loop structure to recycle light twice in the phase shifter. With an L-shaped PN junction, a comparably large overlap between the PN junction and optical modes of both TE0 and TE1 was achieved to lower the driving voltage or decrease the photonic device size. Proof-of-concept high-efficiency modulation with low VπL of 0.37 V·cm was obtained. Subvoltage Vπ can be realized with a millimeter’s length phase shifter by this scheme, which makes the realization of CMOS-compatible driverless modulation highly possible. 40 Gb/s signaling with a bit error rate below the 7% forward-error-correction threshold was then demonstrated with the fabricated ML-MZM, indicating great potential for high-speed optical communication.
Photonics Research
2022, 10(1): 01000214

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!